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The steady-state theory of thermal explosion is concerned with solutions of the following
boundary value problem [1 and 2]:

AT+ ¢(T)=0, Tjp=10 (0.1)

where I is the surface enclosing the region G {a vessel), T is the temperature and ¢ (T) is
a positive, monotonously increasing function differentiable on [0, + oo). If a solution of
{0,1) exists, then we assume that no explosion takes place in the vessel G, otherwise we
assume that it does occur. In [1 and 2] the problem was studied for ¢(7)=eT and the re-
gions which possessed plane, cylindrical or spherical symmetry. In accordance with this
the problem can be reduced to a problem for a segment, circle or a sphere with one indepen~
dent variable equal to the distance from the center.

For a segment, the problem (0,1) becomes

d2T
ae T eM)=0, T|_,,=0 0.2)

In [1 and 2] it was shown that a critical value & = ks exists for (T} = eT such, that
when 0K AL Ay, a solutdon of (0.2) exists, When i > hy, we have no solution, while when
0 <h <hy we actually have two solutions, Denoting by T,, = 7 (0) the maximum tempera-
ture and introducing the fonction A = k(7 ), we obtain the corresponding curve as shown on
Fig. 1. By symmetry we have dT/dx = 0 when x = 0 and the function A(T,,) is singlevalued
and continuous {a solution of the Cauchy's problem for (0,2) with conditions dT/dx = 0 and
T =T, when x=0 exists end depends continuously on T,,). In the case of a circle we have
the analogous result. In the case of a sphere, a critical value of the radius exists also, but
according to [ 2] the curve & (T ) is more complex. In[3] the problem was investigated for a
function @{(T) of the sufficiently general form and it was found that more than two solutions
may exist for a given &, although uniqueness is not excluded. The curve A (T,) may have
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several maxima (Fig. 2) and its shape depends on (7).

If im T =1@(T) = 0 when T - oo, then h(Tm) »o00as T, ~oc.Iflim T-1¢(T)= A when
T + 00 where 0 < 4 <oo, then lim A(T,) when T, > oo, will be a finite, positive quantity.
If lim T-'@(T) = o when T,, » o0, then h (T} » 0 as T, > o, ’

In [4], the stability of steady-state solutions for @(T) = eT was investigated for a num-
ber of symmetric regions. It was shown that only these solutions are stable, for which T <
< T, * where h(Tm*) =h,. In [5], some problems of stability for regions of arbitrary shape
and for the functions @(T) for which @”/(T) > 0, were investigated, In particular it was
shown that there exist such small regions, for which small solutions are stable and if a
stable solution exists for a region G, then it exists for any G* CG.

The present paper considers the stability for the arbitrary functions @(T). We assume
that ’(T) is bounded on the arbitrary, but finite interval. Section 1 deals with the case of
symmetric regions, Section 2 repeat it using another method and Section 3 generalizes the
results to arbitrary regions.

1. Let us consider the problem (0.2) for a segment. In the case of a circle and a sphere,
the arguments used are identical. Let us subdivide the curve £ (T, ) into intervals corres-
ponding to the monotonous variation of the function (Fig. 2) and let us consider, for each
segment, a family of solutions T (x, A) continuous and dependent on A. We easily see that
T '=dT/dh satisfies

arjdz+ ¢ (T =0 (1.1)

and the condition

AT /dz=10 for z=0 (1.2)
Any solution 1/ {x) of the problem

dz d
Hpgapp=o  Gr =0 (1.3)

X

has the form i/ = ¢T " where ¢ is a constant, and the converse is true. Therefore, if T " be-
comes zero within the interval (= 4, A), then ¢/ also becomes zero and vice-versa.

Using the method of small perturbations to study the stability of the steady-state solu-
tion, we arrive at the problem of determination of the sign of the smallest eigenvalue A

2P/ de® 4+ ¢ (T p= —Mp, V], = 0 (1.4)

We find that if the sign is negative, the solution T (%, &) is unstable, while the posi-
tive sign implies stability. We know [6] that the smallest eigenvalue has an associated
eigenfunction which does not become zero within the considered interval and, that the in-
crease in the length of the interval leads to the decrease in the smallest eigenvalue.

Investigation of stability can be conveniently connected with the concept of an envelope
of the family T (x, 4) of integral curves of (0.2) corresponding to the continuous branch of
solutions. We shall, in fact, show that, if the family has an envelope then every tangent to
that envelope corresponds to an unstable solution. Conversely, if for some A, the solution
is unstable, then an envelope of T (x, k) exists for h sufficiently close to k.

Indeed, let the family T (x, #) possess an envelope tangent to the curve T{x, k) at the
point xo(O <xg < hy), then a solution of (1.1) exists, for which T°'= 0 when x = *x,. There-
fore a solution of (1.3) exists, for which A= 0 and which satisfies the condition {|x—7x, =0
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when x = x; and a solution of (1.4) exists for some A < 0, i.e. the considered solution is
unstable. Conversely we may assume that the solution T (x, h,) is unstable, and this will
imply that a solution of (1.4) exists for which the first eigenvalue Ay <0.

Since the first eigenvalue increases with decreasing length of the interval and becomes
positive at sufficiently small values of the intervals, such a point x4, 0 <x, <k, can be
found by virtue of the fact that the first eigenvalue depends continuously on the interval
length, that for the interval (— x4, %) the first eigenvalue will be equal to zero. But since
T '=ci, wehave T =0 when x = tx,.

Further we find that, since the eigenvalue is dependent continuously on the coefficients
and on the length of the interval, it follows that if a solution of (1.4) exists which has Ay <
<0 for h = hy, then for A almost equal to kg the problem (1.4) also has negative first eigen-
values and functions T ‘(x, k) will become zero for h specified above, at the points x lying
in some vicinity of x5 . This in turn implies that the corresponding family T{x, k) has an
envelope.

Usefulness of this assertion becomes clear, when it is applied to the case ¢(T)=eT
which was considered in [4]. The results obtained in [4] with much effort, follow from our
assertion directly. Authors of[4] used the envelope equation in their proof and noted this
fact.

Our assertion facilitates the investigation in the cases when the existence or nonexis-
tence of an envelope can be deduced from other {e.g. geometrical) considerations. For ex-
ample, a family of convex curves enclosing each other in turn has no envelope. It is of in-
terest, that the author of [2] based his proof of the stability of the steady-state solution in
the theory of combustion on the fact, that the family T (x + ¢) has no envelope.

It can easily be shown that the segments over which the function 4 (T,,) decreases, cor-
respond to unstable solutions. Indeed, in this case the curves T (x, h) for different A inter-
sect, and for each admissible b a point 0 < x, <% exists for which T (z;, A) = 0. Obviously,
if T'{x, ) preserved its sign for the given value of & at all x, it would mean that T{x, 4) is
monotonous under the variation of A for all x.

Let us now consider the segments over which A (T, )} increases. First we shall consider
the first increasing segment which begins at the coordinate origin and corresponds to solu~
tions with smaller values of T',. We shall show that a stable solution corresponds to this
segment. Function T (x, A} satisfies the following integral equation

h

T = Kn 9olT @) d (1.5)
=
where Ky, {x, £) is the corresponding Green’s function.
It can easily be shown that the solution with the smaliest T, can be obtained as the
limit of the following sequence when & - oo
h

Ti(e, B k=042, To=0  (Ty(s k)= § Kn(x 89Ty @)]4)
-l

Since Kpy < Kpo when by <h,, we have T (x, h,) & T (x, 4,). However, a stronger ineq-
uvality T (x, 5,) < T{x, h,) exists. Indeed, if at some point we had T (xy, ;)= Tlx,, ,),
then the corresponding {nonintersecting) curves would have a common tangent and the solu-
tions would coincide. Thus the family T (x, A} corresponding to the first segment over which
h(T,) increases, constitutes a family of convex curves (d27/dx2 < 0) enclosing each other
in turn, which has no envelope, and this corresponds to stable solutions.

) This proof is valid for any segment of the curve with the smallest T, (segment 4 of Fig.
2).

It remains to show the stability of solutions for the increasing segments 3 and 5 on Fig.
2. We shall show that if, on moving along a branch of the curve 4 (T,)) we pass from the
stable to the unstable solutions, then a point exists on this branch, for which dA/dT,, = 0.
Let us reformulate the problem (0.2) in the following manner. Introducing au independent
variable y = x/h, we obtain



1086 S.A. Kaganov

@27 [ dy® + k¥ (T)= 0, Tlymyy =0 (1.6)
and the problem of stability reduces to the problem
ap/dy + e (M= —M, ¥|_, =0 1.n

Let us suppose that during a continuous variation of 4 along the given branch, a trans-
ition from stability to instability occurs. Then, since the first eigenvalue is continuously
dependent on k and should change its sign, there exists such a value of & for which the
problem has a solution in which A= 0 and which does not become zero within the interval
{— 1, 1). We shall denote this solution by 1/ {y). Let us now differentiate (1.6) with respect
to T,,. Then, putting T "= dT/dT, , we obtain

d2T , , dh ,
T TR (DT = =2 g (D), T [y, =0 (1.8)

Since the homogeneous boundary value probiem has the solution i/{y), the nonhomogene-
ous problem can have a solution only if the condition

dh {
a7 S o (@ (Tdy =0
-1
is fulfilled. Consequently d4/dT = 0 and the segment 3 of Fig. 2 gives stable solutions,
since the segment 4, as we know, has stable solutions.

To prove the stability of solutions on the segment 5 of Fig. 2, we shall proceed as fol-
lows, We can extend the function @{T) for the values T > T (which is fixed) so, that A (T )
increases when T > T (broken line 6 on Fig. 2), by putting ¢(T) = ¢(T,) for T> T and
rounding the region ofscontact so that it is convex.

Since the form of §(T) does not, at high values, influence the solutions with smaller
values of T, we infer that the solutions are stable on the segment 5. Thus we have shown
that the stable branches of solutions correspond to all increasing segments, A direct conse-
quence of this is, that if the problem (0.2) has several solutions for a given A, then the
first solution is stable, the second one unstable, etc. altemately, with the solutions arran-
ged in the order of increasing T, . Obviously, the above reasoning can be extended to the
case of a circle and a sphere without substantial alterations,

2. We shall now investigate the stability using another method, which may be found

useful in solving problems of this type.
It can easily be shown that the solution which tends to zero when & - 0, is stable. The

proof follows that of [5] with the additional condition that ‘¢ °(T) is bounded when T - 0.
Then, multiplying (1.7) by T” and (1.8) by ¢, subtracting the second from the first and
integrating the result over the interval [~ 1, 1}, we obtain

1
K - *
= 5 Yo (T) dfy/ S YT’ dy (2.1)
—1 -1
Let A be the smallest eigenvalue of the problem (1.7); then from (2.1) it follows that if
k’> 0 and T’> 0, the A> 0 and the first solution is stable.
Let now £ 0, When 4”= 0, Eq. {1.7) has the solution ¢7 = T”, therefore {2.1) yields
1

1
}v -
lim 5 = 5 T°9 (T)dy | 2h S T%dy
h >3 4 1

As we have 77>, 0 for the smallest solution, the integral on the right-hand side is posi-
tive. This in turn implies that d A /dh > 0 when h”= 0 and, that A changes its sign together
with 4% Combining this with the results of Section 1 we easily come to the conclusion that
the solutions are stable over the increasing segments of the curve A {7,,) and unstable over
the decreasing ones.
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3. The above results can be generalized to the case of arbitrary regions. Let us consi-
der the solution of (0.1) for an arbitrary region. In addition to (0.1) we shall consider the
corresponding integral equation

T=SK(P, Q)9 [T (Q)] dQ

G
Let us now introduce a parameter 4 and consider the resulting equation
r=c{ K, QolT Q14 (3.4)
G

Results of [7] imply that this equation has a continuous, infinite branch of solutions in
the space of continuous functions. Using the length R of the solution as a parameter defin-
ing the solution of (3.1) and introducing the function A(R) analogous to 4(T,), we can ex-
tend the results of Sections 1 and 2 to the case of an arbitrary region without significant
changes. At the same time we obtain the results of [8] in a slightly stronger form, namely
that when the region increases, the smallest eigenvalue decreases. If several solutions
exist for a given A, then on arranging them in the order of increasing length we find, that
the first solution is stable, the second one unstable, etc. altemately. In this case we can
take max T(P) with P € G as the measure of the length R.

The methods given above can be used in investigating the stability of solutions of more
general equations with different boundary conditions. We can, for example, apply them to
equations of the type L (T) + ¢(T) = 0 where L (T) is a selfconjugate operator.

In conclusion we note that the problem on the themal stability of steady-state solutions
can be studied using the same methods, when viscous fluid flows in a two-dimensional
channel and in a circular tube are investigated, with heat generated by friction and the de-
pendence of viscosity on temperature [9] both taken into account.

The author thanks S.V. Fal’kovich for his criticism of this work.
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